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新型智能感知网络：AIOT
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物联网正在由传统IOT，向智能AIOT快速发展，AIOT中节点更具自主感知决策能力

传统IOT

感知、计算

通信、协作

新型AIOT

感知、计算、建图

定位、自主移动、通信、协作



自主感知、定位、建图是AIOT的关键问题
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•感知、定位、建图、自主移动、分布式协作是AIOT中新的关键问题。

基于视觉的定位与建图 基于雷达的定位与建图 基于无线的协同定位

智能体需要在复杂环境中自主感知、通信、计算、协作，完成自身定
位、目标检测、目标定位、环境建图等任务



图结构计算问题
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以视觉感知为例

图结构计算是感知、定位、建图、自主移动和分布式协作这些任务背后核心问题。

特征点提取与匹配 多视角几何关系

Pose Graph

相机相邻帧之间，以及相机到环境特征点间的距离和角度测量关系

基于多类型传感器建立Pose
Graph

基于Pose Graph计算所有顶点
空间位置和姿态
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前端任务

视觉 雷达 惯导 无线

特征点提取

特征点匹配

多视角几何

帧间位姿计算

特征点定位

光流法匹配

直接法匹配

边角点提取

平面点匹配

共线方程

帧间位姿计算

特征点定位

匹配点查找

共面方程

INS导航

偏差KF

预积分

测距

测角

标定方法

NLOS消除

后端任务

整体图结构计算

地图生成

点云地图数据库

闭环检测

地图数据库索引
地图数据库快速查

询、更新

重定位

语义
分割 语义地图

数据特征提取
滑窗内部的图结构计算

定位

图结构计算问题分为前端任务和后端任务

整体图结构计算、回环检测与建图

前端任务 后端任务
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• 3D视觉定位问题
n单目摄像头移动行人检测与3D定位

前端研究工作进展(1)

JOO 2020, CVPR2022 (submitted)，Airbird++（演示系统）, 全国人工智能教学实践案例大赛二
等奖

n机场飞鸟检测与3D定位

单目摄像头，3D定位，重识别，<0.5米定位误差 单目摄像头，飞鸟检测，3D定位，<1米定位误差
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• 雷达定位建图问题
n手持激光雷达同步定位与建图系统

InhandLio（演示系统）

前端研究工作进展(2)
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Ubicomp2019(CCF A), Ubicomp2018 (CCF A), Sensors2018, MCM (WIP), TrackPuzzle (WIP)

• 惯性导航定位建图问题
n基于惯性导航的众包的室内路径图生成。
n基于惯性导航的地图匹配问题。

前端研究工作进展(3)

基于手机采集的无标注的杂乱的惯性轨迹，
恢复学习室内路径地图
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后端研究工作进展(1)

（1）高效准确图结构计算算法研究
n层次化的高效、准确的图优化算法。
n距离图中的隐藏结构信息挖掘。

ICCCN2019, TMC (submitted)TON2018 (CCF A), JSAC2018 (CCF A), TMC 2020 (CCF A)，ISPAN2017

分层、基于模块拼接的图实现

图结构中的隐藏信息推断
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•基于刚性的图结构唯一性研究
n极大刚性、极大冗余刚性、极大全局刚性模块划分。
n节点可定位性判定算法。

ICC2022 (Submitted)， 开源了GPART：图刚性结构划分工具集

后端研究工作进展(2)

(a) G1 (b) MRCs (c) MRRCs (d) MGRCs (e) G2 (f) MRCs (g) MRRCs (h) MGRCs

Fig. 4. Visualization of the MRC, MRRC, and MGRC detection in two graphs.

To evaluate efficiency of the toolkit, network size is varied
from 100 to 1100, with 20 nodes as the growth step. 20 graphs
with different node degrees are generated at each node number
and the average running time is counted and shown in Fig. 7.
The running time of 1000 nodes network take 0.4 seconds
which is highly efficient. The time of extracting MRCs, 3CCs,
MRRCs, and MGRCs are also compared. Since the SPQR-tree
decomposition in MRRCs is highly efficient, the major time
is taken by the MRRC detection.

Fig. 5. Edge coverage ratios by different kinds of components.

Fig. 6. Average number of components extracted in different networks.

Fig. 7. Running time of component partition as a function of network size.

V. CONCLUSION

This paper presents an effective and efficient toolkit, i.e.,
GPART for partitioning the MRCs, MRRCs, and MGRCs in
2D graphs. The algorithm details are given and theoretical
explanations of how the algorithm guarantees the properties
of each component is presented. Extensive evaluations show
the validity and high efficiency of GPART. The toolkit is also
outsourced on github. In future work, we will further study
rigidity-based partition algorithms in 3D and for redundant
global rigid components.
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• 分布式图结构计算算法研究
n基于重心坐标的分布式线性定位算法研究
n基于分布式图优化的无人机网络协同定位算法研究

后端研究工作进展(3)

TMC (Submitted)，IROS2022 (WIP)

The establishment conditions of relative state measurement
based on environmental feature point matching are relatively
harsh. At least M pairs of matching feature points are required
in the images taken by two UAVs. The value of M is decided
by experience which must be greater than 8[21]. We set M to
be 15. In order to meet this condition, the distance between two
UAVs has to be within the threshold Dfea and the difference
of rotation angle in each direction is smaller than the threshold
✓fea. These two values are affected by the camera FOV angle
and the image size. Our settings of these values will be shown
in the following experiments part.

VI. EXPERIMENTS

Fig. 7. Five UAVs in our simulation environment.

The experiments are carried out on Airsim simulation plat-
form. Airsim provides the ground truth so it is very convenient
for evaluating the experiment results. We have adopted a series
of experimental parameters that are much in line with the
reality. For the observation, the maximum distance which can
be measured by UWB is 10m. 15 pairs of feature points
are matched in two UAVs’s views and then we are able to
build environment feature points contrain. In the following
experimental evaluation, we uniformly use RMSE(Root Mean
Square Error) as the form of translation and rotation error. The
translation error of the whole system will be calculated as:

tE =

sX

i2N

( ˆtXi � tXi)2 (18)

where ˆtXi is the translation part of the state estimation result
and tXi is the translation part of ground truth state.

Similarly, the rotation error is defined as:

RE =

sX

i2N

( ˆRxXi � RxXi)2 + ( ˆRyXi � RyXi)2 + ( ˆRyXi � RyXi)2

(19)
where the upper left corner mark Rx,Ry,Rz the rotation
angles of the UAV in three orthogonal directions.

The translation error is in meters and the rotation error is
in degrees.

TABLE I
COMPARISON OF RELATIVE STATE ESTIMATION BETWEEN FOUR KINDS

OF DISTRIBUTED METHOD AND CENTRALIZED METHOD WITH
DIFFERENT NUMBERS OF UAVS.

#Num Method tE RE #Iter Time

5

Centralized 0.1 5.5 \ 0.004
Node-based Parall 0.28 5.9 13
Node-based Sequ 0.16 4.6 4
Patch-based Parall 0.24 5.4 83
Patch-based Sequ 0.11 4.9 7

10

Centralized 0.16 8.1 \ 0.02
Node-based Parall 0.34 7.2 5
Node-based Sequ 0.43 7.6 7
Patch-based Parall 0.29 7.1 23
Patch-based Sequ 0.26 7.7 7

20

Centralized 0.18 7.5 \ 0.20
Node-based Parall 0.44 6.7 12
Node-based Sequ 0.36 6.9 13
Patch-based Parall 0.3 6.7 31
Patch-based Sequ 0.21 7.2 19

100

Centralized 0.26 7.7 \
Node-based Parall 0.52 7.5 113
Node-based Sequ 0.48 8.3 97
Patch-based Parall 0.39 8.1 187
Patch-based Sequ 0.37 7.9 196

We tested our algorithm with the swarm containing 5,
10 and 20 UAVs. The average distance between UAVs is
4.5 meters. When the number of UAVs is 10, the distance
between the two farthest UAVs is 13.4m and the distance
between the nearest UAVs is 3m. We combined the two solvers
and two iterative methods described above and four different
distributed methods are formed. The results of these four
distributed methods are also compared with the centralized
method in Tab I.

As the results show, under the circumstance of no global
information for each UAV, the estimation results of distributed
methods are similar to the centralized method.In terms of rota-
tion, the distributed approach is even better than the centralized
approach. Among the four methods proposed in this paper,
subgraph-based-sequential method achieves the best results in
localization accuracy. In general, the subgraph based method
performs better than the node based method in localization
accuracy. However, the node based method requires fewer
iterations ,less time and less computing resources, which
is suitable for situation with high speed and low accuracy
requirements.

The Tab II shows the results of state estimation in the
absence of one certain observation, which can also represent
the robustness of the method. In the case of losing some
observation information, our system can still converge to
a certain result, although the positioning accuracy will be
reduced.

The Tab II also implies the contribution of different obser-
vation methods to the final experiment results to some extent.
The more dense UWB constraint edges can reduce the number
of iterations of the algorithm but it makes little contribution to
the result of rotation error. On the contrary, object detection
has little improvement in localization, but it is very important
for rotation error optimization. The environment feature points
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